
Time Out Before Time is Up: A Classification Model to
Determine Timeouts at Crucial Moments In a Game

Sriharsha Guduguntla
University of California, Berkeley

sguduguntla@berkeley.edu

Jai Sankar
University of California, Berkeley

jai.sankar00@berkeley.edu

Chinmay Gharpure
University of California, Berkeley

cgharpure@berkeley.edu

1. TOPIC INTRODUCTION
The modern NBA is demanding. Players are expected to

have more diverse skill sets. Organizations are expected to
build super teams. League offices are expected to handle
complicated logistics. Meanwhile, the pressure is mounting
on coaches to formulate new strategies and inspire players.
Among their many tough decisions, coaches often face im-
mense criticism for choosing unnecessary or ineffective time-
outs. This is seen in a recent incident from game five of the
NBA finals. Raptors head coach Nick Nurse was heavily crit-
icized for disrupting the Raptor’s momentum in the fourth
quarter by taking an unnecessary timeout. Immediately, the
Warriors struck back with three straight three-point shots
that sealed the outcome of the game. Similarly, in game four
of the 2018 Western Conference Finals, Warriors head coach
Steve Kerr chose not to take a timeout in the last ten sec-
onds of the game, causing dysfunction in the team’s offensive
strategy. Several decisions like these have cost teams critical
games in the past. To help decrease the frequency of these
miscounts, we present a novel tool to predict whether a coach
should take a timeout at a certain moment in the game. The
model utilizes supervised machine learning techniques and
deep learning to accurately formulate predictions.

2. HYPOTHESIS
Given eleven unique metrics quantifying team and coach

history, our model will predict whether a timeout should be
taken at any given moment in a game. These metrics or fea-
tures are the number of successful timeouts for the coach’s
career (see Proposed Methodology), the coach’s career win-
ning percentage, the number of star players on the team, the
point differential between timeouts, the FG percentage of
the team, the number of turnovers, the lead differential, the
number of timeouts left, the seconds passed between time-
outs, whether the team is currently down, and the remaining
time left in the game. While some features describe what
has transpired up to the moment of interest in the game,
others quantify the team’s ability and the coach’s history

of success. After normalizing the features, we will train a
model to produce a binary output of 1 and 0, 1 being that a
timeout should be taken and 0 being that a timeout should
not be taken.

3. POTENTIAL APPLICATIONS
Primarily, our model will transform the way coaches ap-

proach timeouts in a game. Modern coaches rely on video
footage, advice from other coaching staff, player input, and
past games and strategies to improve their decision-making.
Film sessions in particular provide coaches with a strong
understanding of the flow of the game. Meanwhile, player
and staff input give them more interesting, but often subjec-
tive ideas. However, our model considers not only the flow of
the game and thousands of successful timeout examples, but
also considers the team’s past performance and the coach’s
success rate. Ideally, the model will reduce bias as much
as possible to present coaches with an objective result, en-
abling them to leverage the power of ten years of statistical
data at the click of a button. With every new NBA game,
the tool grows smarter, yielding more accurate predictions.
Over time, coaches may notice patterns in the predictions
and start to adopt some of the suggestions in future games.
In the long term, we would like the tool to output specific
reasons for taking a timeout. However, given that the inner
workings of deep neural networks is still largely a mystery,
pinpointing the exact reason for taking a timeout is difficult.

Another relevant application of the model is to the pro-
posed call-challenge system starting in the 2019-2020 NBA
season. According to the new system, a challenge is a time-
out immediately after a play dealing with out-of-bounds
calls, goaltending or basket interference, or a personal foul
(NBA Rulebook). An example use of our model in conjunc-
tion with the call-challenge system is presented in a game
between Team A and Team B. After a player on Team A
commits a foul, Team B gets possession of the ball in the
last five minutes of the game. Guided by the model, Team A
knows that a timeout should be taken if they are on defense
in the last five minutes of the game. Also, the model tells
Team A to not take a timeout on defense in the last two
minutes of the game. As a result, Team A is incentivized to
challenge the play before the final two minutes in order to
gain offensive possession.

4. PROPOSED METHODOLOGY
To create our model, we split our methodology up into

four steps. Play-by-play data will be used to analyze how
the team performs between the current timeout and the next

1



timeout. If the team’s point differential increases and is pos-
itive, then we will label the timeout as successful. Otherwise,
unsuccessful.

4.1 Compiling Features for Timeout Data
Using the play-by-play data from the last ten years, we

will compile all the timeouts that have occurred in each
game. From there, we will compute the eleven features,
outlined in the hypothesis, for each timeout.

1. Coach’s Career Winning Percentage

2. Is Down - If the current team is down at the moment
of the timeout.

3. # of Successful Career Timeouts for Coach -
Every successful timeout in every game by that coach

4. # of Star Players - The # of players on the team
with twenty PPG in the previous season

5. Point Differential Between Timeouts

6. FG % between Timeouts

7. # of Turnovers between Timeouts

8. Lead Differential - Largest lead - Current lead

9. # of Timeouts Left

10. Time Between Timeouts- The overall time elapsed
between the previous timeout and the current timeout.

11. Remaining Time in the Game

4.2 Creating an ML Model
We propose two different algorithms to solve this classifi-

cation problem: leveraging deep learning by implementing a
multilayer perceptron (MLP) or constructing a support vec-
tor machine (SVM) model with an input of the eleven fea-
tures described in Step 4.1. The MLP will consist of four
layers: the input layer, two hidden layers, and an output
layer. The input layer will house eleven neurons represent-
ing each feature. The output layer will consist of one neu-
rons representing whether or not a timeout should be taken.
The model will consist of two hidden layers with ten neurons
each. Since the timeout data is not linearly separable, the
hidden layers will help improve the accuracy of our predic-
tions. Since the features are normalized, the value of each
neuron in the input layer is between 0 and 1. As this network
feeds forward, each neuron will be a weighted sum of the
previous layers neurons applied to an activation function.
In this case, we will use a sigmoid function as the activation
function. The value of the output neurons are determined
by the following equation: bm = σ(

∑n
i=1 wiai − β)

By doing so, the value of the one final neuron is used
to classify whether a timeout should be taken or not. In
one forward pass through the MLP, there are 108 different
weights and 13 different biases. Therefore, we have to choose
the correct weights and bias values in order to classify the
final two neurons as accurately as possible. In order to do
so, we will train our model using the labeled timeout data.

Initially, we will set our weights and biases to random
values. Then we will use the eleven features of our first
labeled data point and run through the MLP to calculate the
value of the output layer neurons. We can then subtract the
values from the output layer neurons and the labeled data to
calculate the error. We can then create a cost function where
the parameters are the 121 weights and bias values and the
output is the error. Now, we perform gradient descent by
taking the negative gradient of the cost function with respect
to each of the bias and weight variables. Then, we can
modify the weights and biases by this value. If we repeat
this process for all the training data points, the weights and
biases will be able to more accurately predict the values of
the outer layer neurons.

For our model, an SVM will classify whether a timeout
should or should not be taken at a given moment. The SVM
takes in the data of the eleven features to classify each time-
out as well as the result of the timeout. Using this data, the
SVM generates multiple hyperplanes . These hyperplanes
divide data classified as timeouts that should and should
not be taken. A hyperplane is a subspace with a dimension
one less than that of its surrounding dimension. We can set
the equation for the hyperplane to be: wTx+ b. The vector
x represents the different axes, w represents the coefficients,
and v is the translation vector. To find the hyperplane that
separates both sets of data, find the vector w that maximizes
the distance between the two hyperplanes wTx+ b = 1 and
wTx + b = −1, setting the final hyperplane equation to be
wTx+ b = 0.

5. TYPES OF DATA USED
To determine the individual features, we will use play-by-

play data from the NBA as well as Basketball Reference.
In order to obtain the defensive rating per team, we will
use published team data from the NBA website. Finally,
in order to determine league rule changes for timeouts and
the challenge flag, we will use articles and datasets from the
NBA website.

2


